Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene

Author:

Xin Hao1,Zhao Qishen1,Chen Dongmei1,Li Wei2

Affiliation:

1. Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78712

2. Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78712 e-mail:

Abstract

Scaling up graphene fabrication is a critical step for realizing industrial applications of chemical vapor deposition (CVD) graphene, such as large-area flexible displays and solar cells. In this study, a roll-to-roll (R2R) graphene transfer system using mechanical peeling is proposed. No etching of graphene growth substrate is involved; thus, the process is economical and environmentally benign. A prototype R2R graphene transfer machine was developed. Experiments were conducted to test the effects of relevant process parameters, including linear film speed, separation angle, and the guiding roller diameter. The linear film speed was found to have the highest impact on the transferred graphene coverage, followed by the roller diameter, while the effect of separation angle was statistically insignificant. Furthermore, there was an interaction effect between the film speed and roller diameter, which can be attributed to the competing effects of tensile strain and strain rate. Overall, the experimental results showed that larger than 98% graphene coverage could be achieved with high linear film speed and large guiding roller diameter, demonstrating that a large-scale dry graphene transfer process is possible with R2R mechanical peeling.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3