Composite Laminate Delamination Simulation and Experiment: A Review of Recent Development

Author:

Tabiei Ala1,Zhang Wenlong2

Affiliation:

1. Professor Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45220 e-mail:

2. Department of Civil Engineering, University of Cincinnati, Cincinnati, OH 45220

Abstract

Composite laminate has extensive usage in the aerospace and automotive industries. Thus delamination, one of its most prevalent and challenging failure modes, has attracted substantial research efforts, and lead to the rapid development of both simulation and experiment method. Although reviews exist about simulation and experiment methods, there are not many that cover the development in the last five years. This paper is targeted to fill that gap. We covered a broad range of topic in delamination, from the basic delamination onset and propagation theories to complex loading scenarios, like impact and fatigue loading. From a simulation point of view, virtual crack closure technique (VCCT) and cohesive zone model (CZM), the two most famous methods of delamination modeling, are compared and elaborated. Their implementation techniques are described, and their merits and drawbacks are discussed. We also covered the failure mode of combined delamination and matrix cracking, which is prevalent in impact loading scenarios. Simulation techniques, along with the failure mechanisms, are presented. From experiment point of view, the discussed topics range from delamination fracture toughness (DFT) tests under static, dynamic, or cyclic loading conditions, to impact tests that aim to obtain the impact resistance and residual strength after impact. Moreover, a collection of recent experiment data is provided.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3