Incorporating Uncertainty in Diagnostic Analysis of Mechanical Systems

Author:

Mocko Gregory M.1,Paasch Robert2

Affiliation:

1. Systems Realization Laboratory, G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, ME Box 344, Atlanta, GA 30332-0405

2. Department of Mechanical Engineering, Oregon State University, Rogers Hall 318, Corvallis, OR 97331-6001

Abstract

The increase in complexity of modern mechanical systems can often lead to systems that are difficult to diagnose and, therefore, require a great deal of time and money to return to a normal operating condition. Analyzing mechanical systems during the product development stages can lead to systems optimized in the area of diagnosability and, therefore, to a reduction of life cycle costs for both consumers and manufacturers and an increase in the useable life of the system. A methodology for diagnostic evaluation of mechanical systems incorporating indication uncertainty is presented. First, Bayes’ formula is used in conjunction with information extracted from the Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), component reliability, and prior system knowledge to construct the Component-Indication Joint Probability Matrix (CIJPM). The CIJPM, which consists of joint probabilities of all mutually exclusive diagnostic events, provides a diagnostic model of the system. The replacement matrix is constructed by applying a predetermined replacement criterion to the CIJPM. Diagnosability metrics are extracted from a replacement probability matrix, computed by multiplying the transpose of the replacement matrix by the CIJPM. These metrics are useful for comparing alternative designs and addressing diagnostic problems of the system, to the component and indication level. Additionally, the metrics can be used to predict cost associated with fault isolation over the life cycle of the system.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3