Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-cavity Solar Reactor

Author:

Osinga T.1,Frommherz U.2,Steinfeld A.1,Wieckert C.3

Affiliation:

1. ETH-Swiss Federal Institute of Technology, Department of Mechanical and Process Engineering, ETH-Zentrum, CH-8092 Zurich, Switzerland

2. Solar Process Technology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland

3. Solar Process Technology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland

Abstract

Zinc production by solar carbothermic reduction of ZnO offers a CO2 emission reduction by a factor of 5 vis-a`-vis the conventional fossil-fuel-based electrolytic or Imperial Smelting processes. Zinc can serve as a fuel in Zn-air fuel cells or can be further reacted with H2O to form high-purity H2. In either case, the product ZnO is solar-recycled to Zn. We report on experimental results obtained with a 5 kW solar chemical reactor prototype that features two cavities in series, with the inner one functioning as the solar absorber and the outer one as the reaction chamber. The inner cavity is made of graphite and contains a windowed aperture to let in concentrated solar radiation. The outer cavity is well insulated and contains the ZnO-C mixture that is subjected to irradiation from the inner graphite cavity. With this arrangement, the inner cavity protects the window against particles and condensable gases and further serves as a thermal shock absorber. Tests were conducted at PSI’s Solar Furnace and ETH’s High-Flux Solar Simulator to investigate the effect of process temperature (range 1350-1600 K), reducing agent type (beech charcoal, activated charcoal, petcoke), and C:ZnO stoichiometric molar ratio (range 0.7–0.9) on the reactor’s performance and chemical conversion. In a typical 40-min solar experiment at 1500 K, 500 g of a ZnO-C mixture were processed into Zn(g), CO, and CO2. Thermal efficiencies of up to 20% were achieved.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3