Nonlinear Vibration Prediction of a Highly Flexible Rotor Supported by an Axial Groove Journal Bearing Considering Journal Angular Whirling Motion

Author:

Koondilogpiboon Nuntaphong1,Inoue Tsuyoshi1

Affiliation:

1. Department of Mechanical Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

Abstract

Abstract The difference in dynamic behavior of the rotor-bearing system supported by the bearing model that considers both lateral and angular whirling motions of the journal (model A), and the model that considers only lateral whirling motion (model B) is investigated. The rotor model consists of a slender shaft, a large disk, and two small disks supported by a self-aligning rolling element bearing (REB) and an axial groove journal bearing (JB) of length-to-diameter ratio (L/D) = 0.6. Three positions of the large disk: 410, 560, and 650 mm measured from the REB, are investigated. Numerical integration of the rotor-bearing system which is modally reduced to the first forward (FWD) mode is performed at above the onset speed of instability until either a steady-state journal orbit or contact between the journal and the bearing occurs to identify the bifurcation type. Numerical results using model A indicate subcritical bifurcation with the contact between the journal and the inboard (IB) side of the bearing in all three large disk positions, whereas those of model B indicate subcritical bifurcation when the large disk position is at 410 mm, and supercritical bifurcation is observed in the other two cases. Finally, the experiments at the same three large disk positions are performed. Subcritical bifurcation with the contact between the journal and the IB side of the bearing is observed in all large disk positions, which conforms with the calculation result of model A. Hence, model A is essential in nonlinear vibration analysis of a highly flexible rotor system.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference23 articles.

1. Stability of Whirl and Whip in Rotor/Bearing Systems;J. Sound Vib.,1988

2. Significance of Considering Nonlinear Effects in Predicting the Dynamic Behavior of Rotating Machinery;J. Vib. Control,1995

3. Rotor-Bearing Systems Instabilities Considering a Non-Linear Hydrodynamic Model,2006

4. Effects of Eccentric Phase Difference Between Two Discs on Oil-Film Instability in a Rotor–Bearing System;J. Mech. Syst. Signal Process.,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3