Continuous Stereolithography 3D Printing of Multi-Network Hydrogels in Triply Periodic Minimal Structures With Tunable Mechanical Strength for Energy Absorption

Author:

Guo Zipeng1,Yang Ruizhe2,Liu Jun2,Armstrong Jason3,Zhao Ruogang4,Zhou Chi1

Affiliation:

1. University at Buffalo, The State University of New York Department of Industrial and Systems Engineering, , 401 Bell Hall, UB N Campus, Buffalo NY 14260

2. University at Buffalo, The State University of New York Department of Mechanical and Aerospace Engineering; RENEW (Research and Education in Energy, Environment and Water) Institute, , 611 Furnas Hall, UB N Campus, Buffalo NY 14260

3. University at Buffalo, The State University of New York Department of Mechanical and Aerospace Engineering, , 220 Bell Hall, UB N Campus, Buffalo NY 14260

4. University at Buffalo, The State University of New York Department of Biomedical Engineering, , 330B Bonner Hall, UB N Campus, Buffalo NY 14260

Abstract

Abstract This work presents a fast additive manufacturing (AM) protocol for fabricating multi-network hydrogels. A gas-permeable PDMS (polydimethylsiloxane) film creates a polymerization-inhibition zone, enabling continuous stereolithography (SLA) 3D printing of hydrogels. The fabricated multi-bonding network integrates rigid covalent bonding and tough ionic bonding, allowing effective tuning of elastic modulus and strength for various loading conditions. The 3D-printed triply periodic minimal structures (TPMS) hydrogels exhibit high compressibility with up to 80% recoverable strain. Additionally, dried TPMS hydrogels display novel energy/impact absorption properties. By comparing uniform and gradient TPMS hydrogels, we analyze their energy/impact absorption capability of the 3D-printed specimens. We use finite element analysis (FEA) simulation studies to reveal the anisotropy and quasi-isotropy behavior of the TPMS structures, providing insights for designing and controlling TPMS structures for energy absorption. Our findings suggest that gradient TPMS hydrogels are preferable energy absorbers with potential applications in impact resistance and absorption.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3