On the Steady-State Workpiece Flow Mechanism and Force Prediction Considering Piled-Up Effect and Dead Metal Zone Formation

Author:

Hu Cheng1,Zhang Weiwei1,Zhuang Kejia1,Zhou Jinming2,Ding Han3

Affiliation:

1. Hubei Digital Manufacturing Key Laboratory, School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China

2. Division of Production and Materials Engineering, Lund University, Lund 22100, Sweden

3. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

Abstract

Abstract The manufacturing of miniaturized components is indispensable in modern industries, where the uncut chip thickness (UCT) inevitably falls into a comparable magnitude with the tool edge radius. Under such circumstances, the ploughing phenomenon between workpiece and tool becomes predominant, followed by the notable formation of dead metal zone (DMZ) and piled-up chip. Although extensive models have been developed, the critical material flow status in such microscale is still confusing and controversial. In this study, a novel material separation model is proposed for the demonstration of workpiece flow mechanism around the tool edge radius. First, four critical positions of workpiece material separation are determined, including three points characterizing the DMZ pattern and one inside considered as stagnation point. The normal and shear stresses as well as friction factors along the entire contact region are clarified based on slip-line theory. It is found that the friction coefficient varies symmetrically about the stagnation point inside DMZ and remains constant for the rest. Then, an analytical force prediction model is developed with Johnson–Cook constitutive model, involving calibrated functions of chip-tool contact length and cutting temperature. The assumed tribology condition and morphologies of material separation including DMZ are clearly observed and verified through various finite element (FE) simulations. Finally, comparisons of cutting forces from cutting experiments and predicted results are adopted for the validation of the predictive model.

Funder

National Natural Science Foundation of China

Wuhan University of Technology

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3