Dynamic Modeling for Control of the Milling Process

Author:

Lauderbaugh L. K.1,Ulsoy A. G.2

Affiliation:

1. Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Troy, New York 12180-3590

2. Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, Michigan 48109-2125

Abstract

In the interest of maximizing the metal removal rate and preventing tool breakage in the milling process, it has been proposed that fixed gain feedback controllers, which manipulate the feed rate to maintain a constant cutting force, be implemented. These process controllers have resulted in substantial improvements in the metal removal rate; however, they may have very poor performance when the process parameters deviate from the design conditions. To address these performance problems, an empirical second order model of the force response for a milling system to feedrate changes is presented along with experimental results which show that the parameters of this model vary significantly with cutting conditions. These variations are shown to have significant effects on the performance of fixed-gain proportional plus integral action and linear model following controllers. This is demonstrated using machining tests as well as through digital simulations.

Publisher

ASME International

Subject

General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Establishment of Real-Time Adaptive Control Strategy for Milling Parameters;IEEE Access;2023

2. Modeling of the Machining Process;Springer Series in Advanced Manufacturing;2021-11-24

3. A Review of Manufacturing Process Control;Journal of Manufacturing Science and Engineering;2020-09-28

4. Adaptive Control of Active Magnetic Bearing against Milling Dynamics;Applied Sciences;2016-02-15

5. Learning Approach to Cycle-Time-Minimization of Wood Milling Using Adaptive Force Control;Journal of Manufacturing Science and Engineering;2015-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3