Experimental Investigations into Traveling Wire Electrochemical Spark Machining (TW-ECSM) of Composites

Author:

Jain V. K.1,Sreenivasa Rao P.1,Choudhary S. K.1,Rajurkar K. P.2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, 208016 India

2. Nontraditional Manufacturing Research Center, Industrial and Management Systems Engineering Department, University of Nebraska, Lincoln, NE 68588

Abstract

Fiber reinforced composites, though relatively new, have already become important engineering materials. So far the main emphasis of research has been on the development of materials, but nowadays more attention is being paid to the industrial manufacture of products made of composites. Conventional machining methods and some unconventional machining methods like laser beam machining (LBM) and water jet machining (WJM) cannot be effectively applied for machining of composites due to the resulting problems of air borne dust, tool wear, and thermal damage. Recently electrochemical spark machining (ECSM) has been applied for the cutting and drilling of holes in composites. The success achieved in the application of ECSM for cutting of composites has stimulated interest in exploring the prospects of use of traveling wire electrochemical spark machining (TW-ECSM) process for cutting of composites. An apparatus for TW-ECSM is designed and fabricated in the laboratory. The results about the feasibility of the process and its performance during machining of composites are presented in this paper. Experiments are carried out on glass-epoxy and kevlar-epoxy composites, using sodium hydroxide (NaOH) as electrolyte. The wire and the workpiece were kept in physical contact with each other by the use of a gravity feed mechanism. The effects of voltage and concentration of the electrolyte on material removal rate, average diametral overcut, tool wear rate, and wire erosion ratio are reported. The theoretical analysis of the mechanism of the process identifies the thermo-mechanical phenomena as the main source of material removal in ECSM.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3