Multicomponent and High-Pressure Effects on Droplet Vaporization

Author:

Aggarwal S. K.1,Mongia H. C.2

Affiliation:

1. Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, IL 60607

2. GE Aircraft Engines, Cincinnati, OH 45215

Abstract

This paper deals with the multicomponent nature of gas turbine fuels under high-pressure conditions. The study is motivated by the consideration that the droplet submodels that are currently employed in spray codes for predicting gas turbine combustor flows do not adequately incorporate the multicomponent fuel and high-pressure effects. The quasi-steady multicomponent droplet model has been employed to investigate conditions under which the vaporization behavior of a multicomponent fuel droplet can be represented by a surrogate pure fuel droplet. The physical system considered is that of a multicomponent fuel droplet undergoing quasi-steady vaporization in an environment characterized by its temperature, pressure, and composition. Using different vaporization models, such as infinite-diffusion and diffusion-limit models, the predicted vaporization history and other relevant properties of a bicomponent droplet are compared with those of a surrogate single-component fuel droplet over a range of parameters relevant to gas turbine combustors. Results indicate that for moderate and high-power operation, a suitably selected single-component (50 percent boiling point) fuel can be used to represent the vaporization behavior of a bicomponent fuel, provided one employs the diffusion-limit or effective-diffusivity model. Simulation of the bicomponent fuel by a surrogate fuel becomes increasingly better at higher pressures. In fact, the droplet vaporization behavior at higher pressures is observed to be more sensitive to droplet heating models rather than to liquid fuel composition. This can be attributed to increase in the droplet heatup time and reduction in the volatility differential between the constituent fuels at higher pressures. For ignition, lean blowout and idle operations, characterized by low pressure and temperature ambient, the multicomponent fuel evaporation cannot be simulated by a single-component fuel. The validity of a quasi-steady high-pressure droplet vaporization model has also been examined. The model includes the nonideal gas behavior, liquid-phase solubility of gases, and variable thermo-transport properties including their dependence on pressure. Predictions of the high-pressure droplet model show good agreement with the available experimental data over a wide range of pressures, implying that quasi-steady vaporization model can be used at pressures up to the fuel critical pressure.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3