Steinkamp's Toy Can Hop 100 Times But Can't Stand Up

Author:

Stiesberg Gregg1,van Oijen Tim2,Ruina Andy3

Affiliation:

1. Department of Physics, Cornell University, Ithaca, NY 14850 e-mail:

2. Civil Engineering and Geosciences, Delft University of Technology, Delft 2600 AA, The Netherlands e-mail:

3. Department of Mechanical Engineering, Cornell University, Ithaca, NY 14850 e-mail:

Abstract

We have experimented with and simulated Steinkamp's passive-dynamic hopper. This hopper cannot stand up (it is statically unstable), yet it can hop the length of a 5 m 0.079 rad sloped ramp, with n≈100 hops. Because, for an unstable periodic motion, a perturbation Δx0 grows exponentially with the number of steps (Δxn≈Δx0×λn), where λ is the system eigenvalue with largest magnitude, one expects that if λ>1 that the amplification after 100 steps, λ100, would be large enough to cause robot failure. So, the experiments seem to indicate that the largest eigenvalue magnitude of the linearized return map is less than one, and the hopper is dynamically stable. However, two independent simulations show more subtlety. Both simulations correctly predict the period of the basic motion, the kinematic details, and the existence of the experimentally observed period ∼11 solutions. However, both simulations also predict that the hopper is slightly unstable (|λ|max>1). This theoretically predicted instability superficially contradicts the experimental observation of 100 hops. Nor do the simulations suggest a stable attractor near the periodic motion. Instead, the conflict between the linearized stability analysis and the experiments seems to be resolved by the details of the launch: a simulation of the hand-holding during launch suggests that experienced launchers use the stability of the loosely held hopper to find a motion that is almost on the barely unstable limit cycle of the free device.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passive Dynamic Hopping;Journal of the Robotics Society of Japan;2023

2. Stable handspring maneuvers with passive flight phases: Results from an inverted pendulum-like template;International Journal of Non-Linear Mechanics;2021-01

3. Dynamic stability and control of a novel handspringing robot;Mechanism and Machine Theory;2019-07

4. A Three-Dimensional Printed, Nonassembly, Passive Dynamic Walking Toy: Design and Analysis;Journal of Mechanisms and Robotics;2018-09-21

5. A Statically Unstable Passive Hopper: Design Evolution;Journal of Mechanisms and Robotics;2017-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3