Geometrically Exact Analysis of Spatial Frames

Author:

Pimenta Paulo M.1,Yojo Takashi1

Affiliation:

1. Department of Structural and Foundation Engineering, Escola Polite´cnica, Universidade de Sa˜o Paulo, CP 61548, 05424-970 Sa˜o Paulo, SP, Brazil

Abstract

A fully nonlinear, geometrically exact, finite strain rod model is derived from basic kinematical assumptions. The model incorporates shear distortion in bending and can take account of torsion warping. Rotation in 3D space is handled with the aid of the Euler-Rodrigues formula. The accomplished parametrization is simple and does not require update algorithms based on quaternions parameters. Weak and strong forms of the equilibrium equations are derived in terms of cross section strains and stresses, which are objective and suitable for constitutive description. As an example, an invariant linear elastic constitutive equation based on the small strain theory is presented. The attained formulation is very convenient for numerical procedures employing Galerkin projection like the finite element method and can be readily implemented in a finite element code. A mixed formulation of Hu-Washizu type is also derived, allowing for independent interpolation of the displacement, strain and stress fields within a finite element. An exact expression for the Fre´chet derivative of the weak form of equilibrium is obtained in closed form, which is always symmetric for conservative loading, even far from an equilibrium state and is very helpful for numerical procedures like the Newton method as well as for stability and bifurcation analysis. Several numerical examples illustrate the usefulness of the formulation in the lateral stability analysis of spatial frames. These examples were computed with the code FENOMENA, which is under development at the Computational Mechanics Laboratory of the Escola Polite´cnica.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3