A General FEM Formulation of Nonlinear Dynamics Applied to Accessing the Statical Loading Effect Upon the Dynamic Response of Planar Frames

Author:

Brasil Reyolando M. L. R. F.1,Mazzilli Carlos E. N.1

Affiliation:

1. Department of Structural and Foundation Engineering, Escola Polite´cnica, Universidade de Sa˜o Paulo, CP 61548, 05424-970 Sa˜o Paulo, SP, Brazil

Abstract

This paper initially discusses the dynamics of discrete structural systems of geometricaly nonlinear behaviour costituted by linear elastic materials. Two formulations are derived, namely global and incremental. They are both suitable to general FE modelling, as the matrix equations of motion are written in explicit form. Matrices and vectors involved are characterized in terms of constraint equations defined within the continuum discretization. In principle, such formulations are applicable to any structural theory, as the theories of beams, plates and shells. As an example, the Bernoulli-Euler beam element is studied herewith. Both global and incremental formulations capture the effect geometrical nonlinearities have upon inertial and elastic forces alike. The ANDROS FEM program, developed by the authors, which is based upon the global formulation, has been successfully used in several nonlinear analyses. From this general background, the paper proceeds to consider the effect statical loading may have upon the free undamped vibration frequencies of a structure. It is shown that the tangent stiffness matrix of the incremental formulation should be used in the resultant eingenvalue problem. In some cases, axial forces are seen to have a strong influence on the internal resonance tuning. It is shown, in a sample structure thus tuned and subjected to dynamical loading, that a nonlinear regime may appear in the response.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3