Systematical Collision Avoidance Reliability Analysis and Characterization of Reliable System Operation for Autonomous Navigation Using the Dynamic Window Approach

Author:

Torkamani Elnaz Asghari1,Xi Zhimin1

Affiliation:

1. Department of Industrial and Systems Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854

Abstract

Abstract Dynamic window approach (DWA) is one of the most widely used algorithms for local path planning and autonomous navigation. Although many successful examples have been shown under various operation conditions, to the authors' best knowledge, there is a lack of systematic reliability analysis, its further design improvement, and systems operation guidelines for meeting reliability requirement under different operation conditions. Several goals can be defined for a successful path planning and autonomous navigation. Among them, assurance of the collision avoidance and reaching the goal with less time are pivotal requirements, yet such reliability analysis is rarely conducted in a rigorous manner. Furthermore, design improvement and systems operation design based on rigorous reliability analysis can hardly be found in this area. This paper addresses such a research gap for autonomous navigation reliability analysis and further conducts design improvement and characterizes systems operation conditions for meeting the collision avoidance reliability using the DWA. To address the technical challenges associated with limited number of simulations or experiments, reliability analysis is conducted using Bayesian statistics combined with the Monte Carlo simulation (MCS). Design improvement and reliable operation conditions can then be conducted based on the reliability analysis. Results indicate that performance reliability of the DWA is sensitive to its parameter configuration, which can be improved through reliability-based design optimization. With characterized collision avoidance reliability constraints, performance reliability of the DWA can be ensured through adjusting its operation parameters.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty Quantification With Mixed Data by Hybrid Convolutional Neural Network for Additive Manufacturing;ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering;2024-05-28

2. Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments;Mathematical Biosciences and Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3