Three-Dimensional Flow Field in the Tip Region of a Compressor Rotor Passage—Part I: Mean Velocity Profiles and Annulus Wall Boundary Layer

Author:

Lakshminarayana B.1,Pouagare M.1,Davino R.1

Affiliation:

1. Department of Aerospace Engineering, The Pennsylvania State University, University Park, Pa. 16802

Abstract

The flow field in the annulus wall and tip region of a compressor rotor was measured using a triaxial, hot-wire probe rotating with the rotor. The flow was surveyed across the entire passage at five axial locations (leading edge, 1/4 chord, 1/2 chord, 3/4 chord, and trailing edge locations) and at six radial locations inside the passage. The data derived include all three components of mean velocity. Blade-to-blade variations of the velocity components, pitch and yaw angles, as well as the passage-averaged mean properties of the annulus wall boundary layer, are derived from this data. The measurements indicate that the leakage flow starts beyond a quarter-chord and tends to roll up farther away from the suction surface than that observed in cascades. Substantial velocity deficiencies and radial inward velocities are observed in this region. The annulus wall boundary layer is well behaved up to half a chord, beyond which interactions with the leakage flow produce complex profiles.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3