High-Frequency Effects in the Aspirating Probe

Author:

Payne S. J.1,Moxon A. J. W.1

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom

Abstract

The aspirating probe has recently been successfully used to measure entropy within a turbomachine; however, it was found that its sensitivity to total pressure and total temperature fluctuations was significantly altered at high frequencies. If the aspirating probe is to be used to measure unsteady flow fields accurately, these high-frequency effects must be better understood. The analysis of this behavior presented here shows that there are three effects that must be considered: the frequency response of the hot wires, the presence of Mach number fluctuations inside the probe, and the change in heat transfer from the hot wires at high frequencies. A theoretical analysis of the first effect has provided a correction factor that can be used for any hot wire, dependent solely on the baseline heat transfer ratio, the overheat ratio, and the time constant of the hot wires. The second and third effects have been examined numerically, since no theoretical solution is known to exist. The Mach number fluctuations are found to be well predicted by a simple one-dimensional solver and to show a variation of ±2.4% in Mach number at the hot-wire plane for the geometry and flow field considered here. The variation in heat transfer with frequency is found to be negligible at high overheat ratios, but significant at overheat ratios below ∼0.4. Coefficients that determine how the measured total pressure and total temperature depend on the actual total pressure, total temperature, and Mach number have been derived, and these show significant variation with the values of the two overheat ratios. Using synthetic data, based on previous experimental data, the effects on the probe measurement accuracy are analyzed. This shows that the amplitudes of total pressure and total temperature are reduced. At widely spaced overheat ratios, the amplitudes are reduced by similar amounts, but at smaller spacing the reductions become dissimilar, resulting in highly erroneous entropy∕R measurements. High-frequency effects thus have a significant effect on the performance of the aspirating probe and should be carefully considered when using it in a highly unsteady flow field.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3