Enhanced Thermal Conductivity of Composite Materials by Filling Sheet and Fiber Under Effect of Filler Contact

Author:

Wang Xiaojian1,Wang Liangbi2

Affiliation:

1. School of Electrical Engineering, Xinjiang University, Urumqi 830047, China

2. Key Laboratory of Railway Vehicle Thermal Engineering of Education Ministry, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

Abstract The most common nongranular fillers are sheet and fiber. When they are distributed along the heat flux direction, the thermal conductivity of the composite increases greatly. Meanwhile, the filler contact also has a large effect on the thermal conductivity. However, the effect of filler contacts on the thermal conductivity of the composite with directional fillers has not been investigated. In this paper, combined effects of the filler contact, content, and orientation are investigated. The results show that the effect of filler orientations on the thermal conductivity is greater than filler contacts in the low filler content, and the exact opposite in the high filler content. The effect of filler contacts on fibrous and sheet fillers is far greater than cube and sphere fillers. This rule is affected by the filler contact. The filler content of 8% is the ideal percolation threshold of composites with fibrous and sheet fillers. It is lower than cube filler and previous reports. The space for the thermal conductivity growth of composites with directional fillers is still very large. The effect of the interfacial thermal resistance should be considered in predicting the thermal conductivity of the composite under high interfacial thermal resistances (>10−4).

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3