Refined Model for Inclined Load Capacity of Suction Caissons

Author:

Aubeny Charles P.1,Han Seungwoon2,Murff J. Don1

Affiliation:

1. Texas A&M University, College Station, TX

2. Tierra, Inc., Raleigh, NC

Abstract

Suction caissons used as mooring anchors for offshore structures can, depending on design concept, be subjected to pullout forces ranging from nearly vertical for tension leg platforms, to intermediate inclination angles for taut mooring systems, to nearly horizontal for catenary moored systems. Hence, the ability to understand and predict suction anchor pullout resistance for a full range of load orientations is becoming of increasing importance. A previous paper by the authors presents a plastic limit analysis for estimating the load capacity of suction anchors over a full range of load inclination ranging from horizontal to vertical. The model was capable of predicting load capacity for various load attachment (padeye) depths, caisson aspect ratios, and soil undrained strength profiles that vary linearly with depth. Loading conditions are assumed to be undrained; therefore, a purely cohesive soil is assumed. The original analysis assumed full adhesion on the boundaries of the caisson; i.e., a skin resistance coefficient α equal to unity. However, actual values of this coefficient are less than unity, with specific values varying according to soil conditions and the method of caisson installation. To overcome the limitation of the original model, this paper presents a modified formulation that allows a skin resistance less than unity. The modified formulation develops an interaction relationship between vertical and horizontal soil resistance on the sides of the caisson that is applicable for any skin resistance conditions ranging from no to full adhesion.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3