Prediction of Green Water Events on FPSO Vessels

Author:

Fyfe Alexander1,Ballard Edward1

Affiliation:

1. PAFA Consulting Engineers, Hampton, UK

Abstract

Most floating vessels experience some sea states, not necessarily extreme storms, which cause large volumes of green water to flow across the deck. Due to the location of safety critical equipment on the deck of FPSOs, the determination of the likely occurrences and the magnitudes of such events are critical to safe design and operation. A method for the determination of green water heights on the deck of an FPSO has been presented in references 1–5. This paper examines the long-term distributions of heights implied by these references and the identification of sea states in which extreme events are likely to occur. The method is based upon the long term distribution of sea states at the intended location, combined with the motion characteristics of the vessel. Freeboard exceedance at the bow and at a point along the side is considered for two typical FPSO configurations. The methodology presented is widely applicable to many locations but wave conditions typical of the Central North Sea are used by way of illustration. The results presented include long term probability distributions of green water height on deck at locations of interest. Relative contributions of each combination of significant wave height and peak period to the probability of the largest single event in a defined return period are determined and discussed. It is shown that the wave conditions most likely to give rise to the most severe green water events are seldom those characterized by the largest wave crest heights. Instead, there exists a complex dependence on characteristic periods associated with vessel motions and on the long-term occurrences of particular sea states. The ability to predict conditions in which the largest green water events are most likely to occur offers the possibility of providing improved operational guidelines for FPSOs, allowing action to be taken to avoid unfavourable loading conditions and/or vessel headings in certain sea conditions. However, it is also shown that it may be difficult to identify some severe green water sea states from normally available forecast data and hence it is important that appropriate provision is made at the design stage.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3