Blade Excitation by Broad-Band Pressure Fluctuations in a Centrifugal Compressor

Author:

Haupt U.1,Rautenberg M.1,Abdel-Hamid A. N.2

Affiliation:

1. Institute for Turbomachinery, University of Hannover, Hannover, Federal Republic of Germany

2. American University in Cairo, Cairo, Egypt

Abstract

The mechanism of blade excitation during the operation of a high-mass-flow, high-pressure-ratio centrifugal compressor has been investigated. This was carried out in the compressor operating range below 60 percent of design speed and in the zone of unsteady flow occurrence, where considerable blade vibration has been measured but no periodic unsteady pressure pattern such as rotating stall could be identified. Experiments conducted to study the mechanism of interactions between flow and blades were accomplished using several measuring methods simultaneously, such as measurements of blade vibration, flow angle at impeller inlet, unsteady pressure at different meridional and peripheral locations, as well as flow visualization by means of oil pattern. Analysis of the measurements showed typical broad-band characteristics of the unsteady pressure field and also for the blade vibration behavior. Results of flow angle investigations at the impeller inlet together with the analysis of oil pattern show that the broad-band pressure fluctuations and blade excitation can be attributed to a strong reverse flow near the suction side of the radial blade in the shroud zone. This reverse flow has its source downstream of the impeller and is extending back up to a location ahead of the impeller inlet. Similar results were obtained when the compressor was operated with vaneless and vaned diffuser configurations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3