Applications of Heat Transfer Fundamentals to Fire Modeling

Author:

Ezekoye O. A.1,Hurley M. J.2,Torero J. L.3,McGrattan K. B.4

Affiliation:

1. Deptartment of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712

2. Society of Fire Protection Engineers, Bethesda, MD 20814

3. The University of Queensland, Brisbane, QLD 4072, Australia

4. National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract

The fire industry relies on fire engineers and scientists to develop materials and technologies used to either resist, detect, or suppress fire. While combustion processes are the drivers for what might be considered to be fire phenomena, it is heat transfer physics that mediate how fire spreads. Much of the knowledge of fire phenomena has been encapsulated and exercised in fire modeling software tools. Over the past 30 years, participants in the fire industry have begun to use fire modeling tools to aid in decision making associated with design and analysis. In the rest of this paper we will discuss what the drivers have been for the growth of fire modeling tools; the types of submodels incorporated into such tools; the role of model verification, validation, and uncertainty propagation in these tools; and possible futures for these types of tools to best meet the requirements of the user community. Throughout this discussion, we identify how heat transfer research has supported and aided the advancement of fire modeling.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference89 articles.

1. Interstate Bank Building Fire, Los Angeles, California,1988

2. Highrise Office Building Fire, One Meridian Plaza, Philadelphia, Pennsylvania,1991

3. Study of Building Performance in the WTC Disaster;Fire Protect. Eng.,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3