Turbulent Natural Convection on Upward and Downward Facing Inclined Constant Heat Flux Surfaces

Author:

Vliet G. C.1,Ross D. C.1

Affiliation:

1. Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas

Abstract

Local heat transfer data were obtained for turbulent natural convection on vertical and inclined upward and downward facing surfaces. The test surface consisted of a 1.83 m (6 ft) wide × 7.32 m (24 ft) high plate with a constant heat flux obtained by electrical resistive heating of a metal foil on the surface. The tests were conducted in air for modified Grashof numbers up to 1015. Measurements were made of the local surface temperature for this constant heat flux condition, for the plate inclined at angles from 30 deg to the vertical (upward facing, unstable) through the vertical to 80 deg to the vertical (downward facing, stable). The results show the location of the transition to be a function of the plate angle. For the unstable case, the transition length decreases as the plate angle increases from the vertical while for the stable case the position of transition increases with the angle from the vertical. The laminar data for both orientations are correlated as: Nux=0.55(Grx*Pr)0.20 in which the gravity is the component along the surface, g cos θ. The turbulent natural convection data are correlated quite well by the relation: Nux=0.17(Grx*Pr)0.25 In the turbulent case the correlation is independent of angle for the unstable case, whereas for the stable case the data correlate best when the gravity is modified by cos2 θ, where θ is measured from the vertical. Thus, there is a significant influence of angle on the convective heat transfer for the stable turbulent region.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3