Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of California, San Diego La Jolla, CA 92093-0411
Abstract
Smith predictorlike designs for compensation of arbitrarily long input delays are commonly available only for finite-dimensional systems. Only very few examples exist, where such compensation has been achieved for partial differential equation (PDE) systems, including our recent result for a parabolic (reaction-diffusion) PDE. In this paper, we address a more challenging wave PDE problem, where the difficulty is amplified by allowing all of this PDE’s eigenvalues to be a distance to the right of the imaginary axis. Antidamping (positive feedback) on the uncontrolled boundary induces this dramatic form of instability. We develop a design that compensates an arbitrarily long delay at the input of the boundary control system and achieves exponential stability in closed-loop. We derive explicit formulae for our controller’s gain kernel functions. They are related to the open-loop solutions of the antistable wave equation system over the time period of input delay (this simple relationship is the result of the design approach).
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献