A High-Dimensional Reliability Analysis Method for Simulation-Based Design Under Uncertainty

Author:

Sadoughi Mohammad Kazem1,Li Meng1,Hu Chao23,MacKenzie Cameron A.4,Lee Soobum5,Eshghi Amin Toghi5

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 e-mail:

2. Mem. ASME Department of Mechanical Engineering, Iowa State University, Ames, IA 50011;

3. Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 e-mails:

4. Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011 e-mail:

5. Mem. ASME Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250 e-mail:

Abstract

Reliability analysis involving high-dimensional, computationally expensive, highly nonlinear performance functions is a notoriously challenging problem in simulation-based design under uncertainty. In this paper, we tackle this problem by proposing a new method, high-dimensional reliability analysis (HDRA), in which a surrogate model is built to approximate a performance function that is high dimensional, computationally expensive, implicit, and unknown to the user. HDRA first employs the adaptive univariate dimension reduction (AUDR) method to construct a global surrogate model by adaptively tracking the important dimensions or regions. Then, the sequential exploration–exploitation with dynamic trade-off (SEEDT) method is utilized to locally refine the surrogate model by identifying additional sample points that are close to the critical region (i.e., the limit-state function (LSF)) with high prediction uncertainty. The HDRA method has three advantages: (i) alleviating the curse of dimensionality and adaptively detecting important dimensions; (ii) capturing the interactive effects among variables on the performance function; and (iii) flexibility in choosing the locations of sample points. The performance of the proposed method is tested through three mathematical examples and a real world problem, the results of which suggest that the method can achieve an accurate and computationally efficient estimation of reliability even when the performance function exhibits high dimensionality, high nonlinearity, and strong interactions among variables.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3