Persistence Filters for Estimation: Applications to Control in Shared-Sensing Reversible Transducer Systems

Author:

Sukumar Srikant1,Akella Maruthi R.2

Affiliation:

1. Systems and Control Engineering,Indian Institute of Technology Bombay,Mumbai, India 400078

2. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 1 University Station, Austin, TX 78712

Abstract

We investigate state observer and feedback control design for systems with state- and time-dependent control or measurement gains. In this framework, we look at reversible transducers that are continually switched between the actuation and sensing modes at some prespecified schedule. Design and analysis of stable state-observers and feedback controllers for these classes of switched/hybrid systems are significantly complicated by the fact that, at any given instant of time, the overall system loses either controllability (during the sensing phase) or observability (during the actuation phase). In this work, we consider systems with scalar time-varying measurement gains and provide a novel observer construction that guarantees exponential reconstruction of state estimates to their true values. We go a step further to derive an exponentially stabilizing controller design that uses the state estimates resulting from our observer. This amounts to the establishment of a rather remarkable separation property of the control design. These developments hinge on a rather mild technical assumption, which can be interpreted for the reversible transducer problem as a persistent dwell time for both the sensing and actuation modes. An important feature here is that the convergence rate can be specified to any arbitrary value. Our theoretical results are validated through numerical simulations of challenging test-cases that include open-loop unstable systems. The paper also illustrates potential for nonlinear extensions of the observer based control design by considering an interesting special case.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference28 articles.

1. Observing the State of a Linear System;Luenberger;IEEE Trans. Mil. Electron.

2. Observers for Multivariable Systems;Luenberger;IEEE Trans. Autom. Control

3. The Extended Luenberger Observer for Nonlinear Systems;Zeitz;Syst. Control Lett.

4. Linearization by Output Injection and Nonlinear Observers;Krener;Syst. Control Lett.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3