Effect of Temperature on Thermoelastic Instability in Thin Disks

Author:

Davis Coby L.1,Krousgrill Charles M.1,Sadeghi Farshid1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

A model of a thin annular plate sliding against an elastic foundation was developed and used to study thermoelastic instability (TEI) in clutches. The analysis examines the stability of the quasi-steady state solution of the governing equations by considering non-axisymmetric perturbations. The results indicate that above critical values of temperature and sliding speed the response of the plate becomes unstable and exhibits large deformations. Two mechanisms account for this behavior: thermal buckling and bending. It is shown that a conservative approximation of the stability boundaries can be constructed by computing only two points on the stability curve. The boundary between stable and unstable behavior depends on the material properties, geometry, and boundary conditions. The model was used to conduct a parametric study which indicates that stability of the sliding system can be improved by reducing the sliding speed, decreasing the modulus of elasticity of the plate, increasing the thermal conductivity, or increasing the thickness. In addition, for a range of sliding speeds, increasing the stiffness of the friction material improves the stability of the system. For speeds outside this range, increasing the stiffness makes the system less stable.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3