Effect of Membrane Electrode Assembly Bonding Technique on Fuel Cell Performance and Platinum Crystallite Size

Author:

Buelte Steven1,Walczyk Daniel2,Sweeney Ian3

Affiliation:

1. Research Scientist Center for Automation Technologies and Systems, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 e-mail:

2. Professor of Mechanical Engineering Center for Automation Technologies and Systems, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 e-mail:

3. Center for Automation Technologies and Systems, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 e-mail:

Abstract

Major efforts are underway to reduce fuel cell manufacturing costs, thereby facilitating widespread adoption of fuel cell technology in emerging applications, such as combined heat and power and transportation. This research investigates new methods for fabricating membrane electrode assemblies (MEAs), which are at the core of fuel cell technology. A key manufacturing step in the production of fuel cell MEAs is bonding two electrodes to an ionically conductive membrane. In particular, new MEA bonding methods are examined for polybenzimidazole-based phosphoric acid (PBI/PA) fuel cells. Two new methods of bonding PBI/PA fuel cell MEAs were studied with the goal of reducing cycle time to reduce manufacturing costs. Specifically, the methods included ultrasonic bonding and thermally bonding with advance process control (APC thermal). The traditional method of thermally bonding PBI MEAs requires 30 seconds, whereas the new bonding methods reduce the cycle time to 2 and 8 seconds, respectively. Ultrasonic bonding was also shown to significantly reduce the energy consumed by the bonding process. Adverse effects of the new bonding methods on cell performance and structure were not observed. Average cell voltages at 0.2 A/cm2 for ultrasonic, APC thermal, and thermally bonded MEAs were 650 mV, 651 mV, and 641 mV, respectively. The platinum crystallite size was found to be the same before and after ultrasonic bonding using XRD. Furthermore, changes in the electrode pore structure were not observed in SEM images taken after ultrasonic bonding. The test results show that it is possible to reduce manufacturing costs by switching to faster methods of bonding PBI phosphoric acid fuel cell MEAs.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3