Performance Evaluation of Dynamic Model of Compact Heat Exchange Reformer for High-Temperature Fuel Cell Systems

Author:

Ki Jeongpill1,Kim Daejong2

Affiliation:

1. e-mail:

2. e-mail:  Mechanical and Aerospace Engineering, The University of Texas at Arlington, 500 W. 1st Street, Arlington, TX 76019

Abstract

Solid oxide fuel cell (SOFC) systems are the most advanced power generation system with the highest thermal efficiency. The current trend of research on the SOFC systems is focused on multikilowatt scale systems, which require either internal reforming within the stack or a compact external reformer. Even if the internal reforming within the SOFC stack allows compact system configuration, it causes significant and complicated temperature gradients within the stack, due to endothermic reforming reactions and exothermic electrochemical reactions. As an alternative solution to the internal reforming, an external compact heat exchange reformer (CHER) is investigated in this work. The CHER is based on a typical plate-fin counterflow or coflow heat exchanger platform, and it can save space without causing large thermal stress and degradation to the SOFC stack (i.e., eventually reducing the overall system cost). In this work, a previously developed transient dynamic model of the CHER is validated by experiments. An experimental apparatus, which comprises the CHER, air heater, gas heater, steam generator, several mass flow controllers, and controller cabinet, was designed to investigate steady state reforming performance of the CHER for various hot air inlet temperatures (thermal energy source) and steam to carbon ratios (SCRs). The transient thermal dynamics of the CHER was also measured and compared with simulations when the CHER is used as a heat exchanger with inert gas. The measured transient dynamics of CHER matches very well with simulations, validating the heat transfer model within the CHER. The measured molar fractions of reformate gases at steady state also agree well with the simulations validating the used reaction kinetics. The transient CHER model can be easily integrated into a total integrated SOFC system, and the model can be also used for optimal design of similar CHERs and provides a guideline to select optimal operating conditions of the CHERs and the integrated SOFC system.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference23 articles.

1. Research Issues in Molten Carbonate Fuel Cells: Pressurization,1992

2. Carbon Dioxide Capture in Fuel Cell Power Systems,1994

3. Catalytic Partial Oxidation Reforming of Hydrocarbon Fuels,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3