Thermal Wedge Lubrication of Parallel Surface Thrust Bearings

Author:

Currie I. G.1,Brockley C. A.2,Dvorak F. A.3

Affiliation:

1. California Institute of Technology, Pasadena, Calif.

2. Department of Mechanical Engineering, The University of British Columbia, Vancouver, B. C., Canada

3. Cambridge University, Cambridge, England

Abstract

The parallel surface thrust bearing has been studied both theoretically and experimentally. The general equations governing the laminar flow of a Newtonian fluid are presented and suitably reduced to describe the flow of lubricant through a plain collar bearing with sector pads. A computer solution of the resulting equations has been obtained in which the variations of density and viscosity with temperature are accommodated and the circumferential leakage of oil from the bearing is recognized. The resulting performance curves indicate that useful load-carrying capacities, produced by a “thermal wedge” effect, are possible with a parallel surface thrust bearing. The effect of the inlet oil temperature and bearing speed on the performance is shown. Tests were carried out on three, four, and five-pad bearings operating at 15,000 rpm. It was found that circumferential oil seals were required to insure stable operation. The results confirm that hydrodynamic lubrication may be achieved with a parallel surface thrust bearing. However, it was found that some practical limitations are imposed by high temperatures. A comparison between the theoretical load capacity of an optimum tilting pad bearing and that of a parallel surface bearing for equivalent pad dimensions, speed, and lubricant conditions revealed that the tilting pad bearing had the superior performance. Comparison of friction results with the findings of other workers shows good agreement.

Publisher

ASME International

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3