Significant Corrosion of the Davis-Besse Nuclear Reactor Pressure Vessel Head

Author:

Lang Theodore A.1

Affiliation:

1. Davis Besse Nuclear Power Station, Oak Harbor, OH

Abstract

In March of 2002, significant corrosion of the Davis-Besse reactor head was discovered. The Davis-Besse reactor head is of standard construction, composed of low alloy steel and clad with stainless steel. Alloy 600 control rod nozzles penetrate the reactor head, attached with J-groove welds. During an ultrasonic inspection, three of these nozzles were found to have through-wall cracks induced by Primary Water Stress Corrosion Cracking (PWSCC). Undiscovered leakage of borated water over the course of several operating cycles from one of these nozzles led to localized cooling and wastage of the reactor head near the nozzle. This leakage, less than 0.2 gpm (0.8 l/min), was small in comparison to allowable unidentified leakage, but larger than typical PWSCC leakage. The greatest damage to the low alloy steel reactor pressure vessel head was an oblong cavity, approximately 7 × 5 inches (18 × 13 cm), penetrating to the stainless steel cladding. The cracks in this nozzle were axially oriented, which would previously have been considered low risk because they would not have caused control rod ejection. However, the damage led to an increase in risk of a loss of coolant accident, prolonged loss of generation, and replacement of the reactor pressure vessel head. In addition to the industry wide regulatory impact of this event, the Nuclear Regulatory Commission has indicated that there may be a need to revise the inservice inspection requirements in Section XI of the ASME Code. This paper provides a brief synopsis of PWSCC in Control Rod Drive Mechanism nozzles, describes the inspection activities that led to the discovery of both the cracking and the corrosion, and describes the extent and technical cause of the damage. Management and human performance issues that allowed the damage to progress to an advanced state are discussed, since this event would not have been noteworthy if administrative controls and programs had been properly implemented.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3