Stirling Engines for Distributed Low-Cost Solar-Thermal-Electric Power Generation

Author:

Der Minassians Artin1,Sanders Seth R.1

Affiliation:

1. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720

Abstract

Due to their high relative cost, solar-electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaics, but offered at about $1/W, would lead to widespread deployment at residential and commercial sites. This paper addresses the feasibility study of a low-cost solar-thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator collector operation at moderate temperatures, in the range of 120°C to 150°C. This temperature range is consistent with the use of optical concentrators with low-concentration ratios, wide angles of radiation acceptance which are compatible with no diurnal tracking and no or only a few seasonal adjustments. Therefore, costs and reliability hazards associated with tracking hardware systems are avoided. This paper further outlines the design, fabrication, and test results of a single-phase free-piston Stirling engine prototype. A very low loss resonant displacer piston is designed for the system using a very linear magnetic spring. The power piston, which is not mechanically linked to the displacer piston, forms a mass-spring resonating subsystem with the gas spring, and has a resonant frequency matched to that of the displacer. The design of heat exchangers is discussed, with an emphasis on their low fluid friction losses. Only standard low-cost materials and manufacturing methods are required to realize such a machine. The fabricated engine prototype is successfully tested as an engine, and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations. Based on the experimental results and the verified component models, an appropriately dimensioned Stirling engine candidate is discussed.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference15 articles.

1. Apricus Solar Co. Ltd., Apricus Technical FAQ Series.

2. SCHOTT-Rohrglas GmbH, SCHOTT Evacuated Tube Collector ETC 16.

3. Low-Cost Distributed Solar-Thermal-Electric Power Generation;Der Minassians;Proc. SPIE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3