Design of Large-Displacement Compliant Joints

Author:

Moon Yong-Mo1,Trease Brian Patrick1,Kota Sridhar1

Affiliation:

1. University of Michigan, Ann Arbor, MI

Abstract

Flexure joints are widely used to approximate the function of traditional mechanical joints, while offering the benefits of high precision, long life, and ease of manufacture. This paper investigates and catalogs the drawbacks of typical flexure connectors and presents several new designs for highly-effective, kinematically-behaved compliant joints. A revolute and a translational compliant joint are proposed (Figure 1), both of which offer great improvements over existing flexures in the qualities of (1) large range of motion, (2) minimal axis drift, (3) increased off-axis stiffness, and (4) reduced stress-concentrations. Analytic stiffness equations are developed for each joint and parametric computer models are used to verify their superior stiffness properties. A catalog of design charts based on the parametric models is also presented, allowing for rapid sizing of the joints for custom performance. Finally, two multi-degree-of-freedom joints are proposed as modifications to the revolute joint. These include a compliant universal joint and a compliant spherical joint, both designed to provide high degrees of compliance in the desired direction of motion and high stiffness in other directions.

Publisher

American Society of Mechanical Engineers

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear stiffness and kinetostatic modeling of a large-range 3-degree-of-freedom planar compliant parallel mechanism;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-02-27

2. A New Butterfly-Inspired Compliant Joint with 3-DOF In-plane Motion;Arabian Journal for Science and Engineering;2020-02-26

3. Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey;Applied Mechanics Reviews;2020-01-20

4. Effect of Degree-of-Symmetry on Kinetostatic Characteristics of Flexure Mechanisms: A Comparative Case Study;Chinese Journal of Mechanical Engineering;2018-04-25

5. Task-based design of cable-driven articulated mechanisms;Proceedings of the 1st Annual ACM Symposium on Computational Fabrication;2017-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3