Prediction of Workpiece-Fixture Contact Forces Using the Rigid Body Model

Author:

Wang Michael Yu1,Pelineascu Diana M.2

Affiliation:

1. Chinese University of Hong Kong, Shatin, N.T., Hong Kong

2. University of Maryland, College Park, MD

Abstract

Prediction of workpiece-fixture contact forces is important in fixture design since they define the fixture stability during clamping and strongly influence workpiece accuracy during manufacturing. This paper presents a solution method for predicting the normal and frictional contact forces between workpiece-fixture contacts. The fixture and workpiece are considered to be rigid bodies, and the model solution is solved as a constrained quadratic optimization by applying the minimum norm principle. The model reveals some intricate properties of the passive contact forces, including history dependency during a sequence of clamping and/or external force loading. Model predictions are shown to be in good agreement with known results of an elastic-contact model prediction and experimental measurements. This presented method is conceptually simple and computationally efficient. It is particularly useful in the early stages of fixture design and process planning.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A methodology for the development of machining fixtures for components with complicated geometry;International Journal of Computer Integrated Manufacturing;2008-10

2. A combined contact elasticity and finite element-based model for contact load and pressure distribution calculation in a frictional workpiece-fixture system;The International Journal of Advanced Manufacturing Technology;2007-09-06

3. Effects of Clamping on the Laser Forming Process;Journal of Manufacturing Science and Engineering;2006-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3