Thermal Modeling Technique for Multiple Transistors Within Silicon Chip

Author:

Suwa Tohru1,Hadim Hamid2

Affiliation:

1. Japanese Associate Degree Program, Universiti Selangor, Jln Zirkon A7/A, Seksyen 7, 40000 Shah Alam, Selangor, Malaysia

2. Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030

Abstract

Although thermal performance is always a critical issue in electronic packaging design at every packaging level, there is a significant lack of reliable and efficient thermal modeling and analysis techniques at the silicon chip level. Sharp temperature increases within small areas, which are called “hot spots”, often occur in silicon chips. For more efficient designs, the temperature and location of hot spots need to be predicted with acceptable accuracy. With millions of transistor gates acting as heat sources, accurate thermal modeling and analysis of silicon chips at micrometer level has not been possible using conventional techniques. In the present study, an efficient and accurate multi-level thermal modeling and analysis technique has been developed. The technique combines finite element analysis sub-modeling and a superposition method for more efficient modeling and simulation. Detailed temperature distribution caused by a single heat source is obtained using the finite element sub-modeling technique, while the temperature rise distribution caused by multiple heat sources is obtained by superimposing the finite element analysis result. Using the proposed thermal modeling methodology, one case of finite element analysis with a single heat source is sufficient for modeling a silicon chip with millions of transistors acting as heat sources. When the whole package is modeled using the finite element method, the effect of the package and its boundary conditions are also included in the superposition results, which makes it possible to model a large number of transistors on a silicon chip. The capabilities of the proposed methodology are demonstrated through a case study involving thermal modeling and analysis of a microprocessor chip with 4 × 106 transistors.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3