Enhanced Compressive Sensing of Dielectric Elastomer Sensor Using a Novel Structure

Author:

Liu Junjie12,Mao Guoyong12,Huang Xiaoqiang12,Zou Zhanan3,Qu Shaoxing14

Affiliation:

1. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

2. Soft Matter Research Center (SMRC), Zhejiang University, Hangzhou 310027, China

3. Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309

4. Soft Matter Research Center (SMRC), Zhejiang University, Hangzhou 310027, China e-mail:

Abstract

Dielectric elastomer (DE) can undergo large deformation when subjected to external forces or voltage, leading to the variation of the capacitance. A novel DE sensor is proposed to detect compressive force. This sensor consists of a series of elements made of DE membrane with out-of-plane deformation. Each element experiences highly inhomogeneous large deformation to obtain high sensitivity. Both experimental and theoretical studies are conducted to optimize the performance of the sensor element, and the effects of the prestretches and the aspect ratios on the sensitivity are achieved. Results from the theoretical analysis based on continuum mechanics agree well with the experimental data. Furthermore, the reliability of the sensor element is illustrated by additional experimental investigation on the operation after 2000 cyclic loadings. This study provides guidance for the design and performance analysis of soft sensors.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3