Thermoelastic Instability of Two-Conductor Friction System Including Surface Roughness

Author:

Jang J. Y.1,Khonsari M. M.1

Affiliation:

1. Dow Chemical Endowed Chair in Rotating Machinery, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803

Abstract

A model is developed to investigate the mechanism of thermoelastic instability (TEI) in tribological components. The model consists of two thermally conducting bodies of finite thickness undergoing sliding contact. Appropriate governing equations are derived to predict the critical speed beyond which the TEI is likely to occur. This model takes into account the surface roughness characteristics of the contacting bodies as well as the thermal contact conductance at the interface. Analytical expressions are provided for the special cases neglecting the disk thickness and the thermal contact conductance. An extensive series of parametric simulations and discussion of the implication of the results are also presented. The simulations show that the difference in material properties and geometry of the two conducting bodies has a pronounced influence on the critical speed. A special case of the model shows that the threshold of TEI critical speed is pushed to a much higher level when the conducting bodies have identical material properties and are geometrically symmetric. It is also shown that the perturbed wave generally tends to move with the body with higher thermal conductivity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new thermal management method for reducing thermoelastic growth of an air foil bearing;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2024-06-06

2. Some Fundamental Issues in Foil Bearings;Lecture Notes in Mechanical Engineering;2020-10-14

3. On the thermoelastic instability of foil bearings;Tribology International;2018-05

4. Bearing Materials;Applied Tribology: Bearing Design and Lubrication;2017-08-14

5. Surface Texture, Interaction of Surfaces and Wear;Applied Tribology: Bearing Design and Lubrication;2017-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3