Vibration Mode Analysis of Frames by the Method of Reverberation Ray Matrix

Author:

Miao F. X.1,Sun Guojun1,Pao Y. H.2

Affiliation:

1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China

Abstract

The method of reverberation ray matrix (MRRM) has been developed by (Pao et al. 1999, “Dynamic Response and Wave Propagation in Plane Trusses and Frames,” AIAA J., 37(5), pp. 594–603) recently based on the theory of wave propagation for transient analysis of truss or frame structures. In this study, the MRRM is employed to obtain the frequency response function (FRF) of displacement of a frame under the action of a unit impulse load. The natural frequencies of the frame are determined from the FRF, since the curve of FRF has peak when a resonant frequency is approached. The vibration mode is retrieved from the adjoint matrix of the coefficient matrix of the governing equations of MRRM. The MRRM has advantage over numerical methods, such as finite element method (FEM), since in MRRM the frame is treated as an assembly of multiconnected beams, and exact solutions to the beam differential equations are employed to yield the system matrix of the frame. The vibration mode obtained is therefore exact. A planar frame made of 17 aluminum bars is analyzed. The vibration modes, as well as natural frequencies obtained from MRRM, coincide accurately with those obtained from FEM of ANSYS for the first a few modes; however, the difference of the frequencies between the two methods becomes a bit obvious when high order modes are examined.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3