Empirical Studies of Designer Thinking: Past, Present, and Future

Author:

Dinar Mahmoud1,Shah Jami J.1,Cagan Jonathan2,Leifer Larry3,Linsey Julie4,Smith Steven M.5,Hernandez Noe Vargas6

Affiliation:

1. Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287 e-mail:

2. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 e-mail:

3. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 e-mail:

4. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30313 e-mail:

5. Department of Psychology, Texas A&M University, College Station, TX 77843 e-mail:

6. Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79902 e-mail:

Abstract

Understanding how designers think is core to advancing design methods, tools, and outcomes. Engineering researchers have effectively turned to cognitive science approaches to studying the engineering design process. Empirical methods used for studying designer thinking have included verbal protocols, case studies, and controlled experiments. Studies have looked at the role of design methods, strategies, tools, environment, experience, and group dynamics. Early empirical studies were casual and exploratory with loosely defined objectives and informal analysis methods. Current studies have become more formal, factor controlled, aiming at hypothesis testing, using statistical design of experiments (DOE) and analysis methods such as analysis of variations (ANOVA). Popular pursuits include comparison of experts and novices, identifying and overcoming fixation, role of analogies, effectiveness of ideation methods, and other various tools. This paper first reviews a snapshot of the different approaches to study designers and their processes. Once the current basis is established, the paper explores directions for future or expanded research in this rich and critical area of designer thinking. A variety of data may be collected, and related to both the process and the outcome (designs). But there are still no standards for designing, collecting and analyzing data, partly due to the lack of cognitive models and theories of designer thinking. Data analysis is tedious and the rate of discoveries has been slow. Future studies may need to develop computer based data collection and automated analyses, which may facilitate collection of massive amounts of data with the potential of rapid advancement of the rate of discoveries and development of designer thinking cognitive models. The purpose of this paper is to provide a roadmap to the vast literature for the benefit of new researchers, and also a retrospective for the community.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3