Investigation of Fluid Flow and Heat Transfer Characteristics in Wavy Mini-Channel Heat Sink With Interconnectors

Author:

Morshed A. K. M. Monjur1,Shuvo Abdul Aziz1,Bappy Md. Omarsany1,Tikadar Amitav2,Paul Titan C.3

Affiliation:

1. Department of Mechanical Engineering, Bangladesh University of Engineering & Technology , Dhaka 1000, Bangladesh

2. The G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, GA 30332

3. Department of Computer Science, Engineering, and Mathematics, University of South Carolina , Aiken, SC 29801

Abstract

Abstract In this paper, a novel sinusoidal wavy mini-channel heat sink (MCHS) with interconnectors (IC w-MCHS) has been introduced, and the effectiveness of the proposed heat sink over conventional mini-channel heat sink (s-MCHS) has been numerically investigated. Different parameters, i.e., wavelengths, wave amplitudes, and phase shifts of the proposed sinusoidal wavy MCHS, were varied to study its effect on thermal and hydraulic performance. This study used three different wavelengths, three different amplitudes, and two different phase shifts, and Reynolds number (Re) varied from 300 to 800. The Nusselt number (Nu) of IC w-MCHS increased as the wave amplitude ratio (α) and Re increased, whereas it increased with the decrement of the wavelength ratio (β). Nu of the IC w-MCHS was also found to depend on phase shift (θp); for θp = π, the chaotic advection and increment of flow reversal were observed in the IC w-MCHS compared to θp = 0, resulting in higher Nu and higher pressure drop penalty. Nu of the IC w-MCHS was found to be 115% higher compared to s-MCHS at Re 550, θp = π, and α = 0.3, whereas it was found 77% higher for θp = 0. The maximum temperature of the IC w-MCHS heat sink was also found to decrease compared to that of the s-MCHS due to enhanced coolant mixing. A maximum 26% decrease in the heat sink temperature was observed for the IC w-MCHS at Re 800 compared to the s-MCHS.

Publisher

ASME International

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3