A Moving Horizon Estimation for a Class of Soft Continuum Manipulators

Author:

Bastos Guaraci1

Affiliation:

1. Mechanical Engineering Department, Federal University of Pernambuco , Av. Prof. Moraes Rego 1235, Recife, Pernambuco 50670-901, Brazil

Abstract

Abstract This work proposes a formulation for the moving horizon estimation technique considering both states and parameters obtained simultaneously with reduced estimation issues. The parameters can be either constant or time-varying, while states are related to complex output trajectories related to underactuated systems. Particularly, the proposed formulation considers additional equality constraints as a counterpart of the dynamics tube-model predictive control. Thus, it becomes less dependent on probabilistic information, such as probability density function and covariance of the process noise. In addition, the calibration of the method parameters has less sensitivity and driven by the tube constraints. The proposed approach can be applied in different systems; however, here it is detailed for a class of soft continuum manipulators with fluidic actuation through a variable flowrate and demonstrated with numerical simulations in planar motion. Results indicate robustness of the algorithm estimation in a challenging scenario arising from underactuation as well as in the presence of uncertainty and external disturbance, while simultaneously states and a vector of structural parameters are coherently estimated.

Publisher

ASME International

Reference33 articles.

1. A New Approach to Linear Filtering and Prediction Problems;ASME J. Basic Eng.,1960

2. New Extension of the Kalman Filter to Nonlinear Systems;Kadar,1997

3. The Monte Carlo Method;J. Am. Stat. Assoc.,1949

4. An Algebraic Wavenumber Identification (AWI) Technique Under Stochastic Conditions;Mech. Syst. Signal Process.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3