Comparison of Thermal Behavior of Self-Designed Internally Cooled Cutting Tool for Various Heat Transfer Fluids-Statistic and Computational Fluid Dynamics Approach

Author:

Öztürk Erkan1,Yıldızlı Kemal1

Affiliation:

1. Ondokuz Mayıs University Department of Mechanical Engineering, Faculty of Engineering, , 55200 Atakum, Samsun , Turkey

Abstract

Abstract Compared with dry machining, using traditional cutting fluids has some weaknesses, such as environmental pollution, high machining costs, and harmful effects on human health. Internally cooled cutting tools (ICCTs) have been promising, sustainable, health-friendly, and green technologies for turning applications. However, the effects of different types of internal coolant fluids on insert tip temperature (Ttip) have not been investigated for ICCTs. The machining quality of metallic materials and tool life can improve with effective cooling. This study investigates the internal cooling performance of a self-designed internally cooled smart cutting tool (ICSCT) by comparing different heat transfer fluids. Therefore, a conjugate heat transfer (CHT) model was set for a self-designed ICSCT. The CHT simulation was experimentally confirmed using pure water (…developed by Ozturk, E., Yildizli, K., and Saglam, F., 2021, “Investigation on an Innovative Internally Cooled Smart Cutting Tool With the Built-In Cooling-Control System,” Arab. J. Sci. Eng., 46(3), pp. 2397–2411). After that, the effects of flow velocity (Vf) and the inlet temperature of the coolant fluid (Tinlet) alongside different types of glycol-based heat transfer fluids (including pure water) on Ttip were statistically evaluated by the Taguchi method and analysis of the variance (ANOVA). It was found that the most influential factor was the Tinlet at a contribution ratio level of 88.32%. Additionally, according to statistics, Vf and the type of heat transfer fluid were significant. Hence, since no external coolant is used, the designed smart tool can be considered environmentally friendly and health-friendly. In conclusion, glycol-based fluids can be a better choice for internally cooled tool designs owing to their superior features, e.g., corrosion prevention, nontoxicity, and stable heat transfer capability at lower temperatures compared to pure water, although pure water has better thermal properties than the glycol-based fluids (Dynalene Heat Transfer Fluids Technical Datasheets, Cited March 31, 2020).

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3