Dynamic Resource Allocation in Systems-of-Systems Using a Heuristic-Based Interpretable Deep Reinforcement Learning

Author:

Chen Qiliang1,Heydari Babak2

Affiliation:

1. Northeastern University Department of Mechanical and Industrial Engineering, Multi-AGent Intelligent Complex Systems (MAGICS) Lab, , Boston, MA 02115

2. Institute of Experiential AI, Northeastern University Department of Mechanical and Industrial Engineering, Multi-AGent Intelligent Complex Systems (MAGICS) Lab, , Boston, MA 02115

Abstract

Abstract Systems-of-systems (SoS) often include multiple agents that interact in both cooperative and competitive modes. Moreover, they involve multiple resources, including energy, information, and bandwidth. If these resources are limited, agents need to decide how to share resources cooperatively to reach the system-level goal, while performing the tasks assigned to them autonomously. This paper takes a step toward addressing these challenges by proposing a dynamic two-tier learning framework, based on deep reinforcement learning that enables dynamic resource allocation while acknowledging the autonomy of systems constituents. The two-tier learning framework that decouples the learning process of the SoS constituents from that of the resource manager ensures that the autonomy and learning of the SoS constituents are not compromised as a result of interventions executed by the resource manager. We apply the proposed two-tier learning framework on a customized OpenAI Gym environment and compare the results of the proposed framework to baseline methods of resource allocation to show the superior performance of the two-tier learning scheme across a different set of SoS key parameters. We then use the results of this experiment and apply our heuristic inference method to interpret the decisions of the resource manager for a range of environment and agent parameters.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3