Affiliation:
1. Jiangsu University Institute for Energy Research, , 301 Xuefu Road, Zhenjiang, Jiangsu 212013 , China
Abstract
Abstract
To facilitate the large-scale application of direct methanol fuel cells (DMFCs), the issue of low Pt/C durability due to Pt degradation and carbon corrosion in harsh DMFC operating conditions must be addressed. A promising strategy is to hybridize metal oxides with carbon materials, resulting in a durable and conductive support that exhibits a strong metal-support interaction (SMSI) effect on platinum nanoparticles (Pt NPs). In this study, we introduced a TiO2 coating on carbon black, creating a TiO2 nanolayer between Pt and carbon black. The nanolayer not only protects the carbon black but also activates the SMSI effect on Pt. The resulting Pt/C@TiO2 electrocatalyst exhibits superior durability than commercial Pt/C. After the accelerated durability test, the mass activity loss of the methanol oxidation reaction (MOR) of Pt/C@TiO2 (32%) is significantly lower than that of Pt/C (46.8%). Moreover, the MOR activity of Pt/C@TiO2 is higher than Pt/C as well. It suggests that Pt/C@TiO2 shows great potential as a highly durable and active electrocatalyst for DMFCs.
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials