The Effect of Curved Geometry on Exiting Flow of Fluidic Oscillators

Author:

Bohan Brian T.1,Polanka Marc D.1,Kim Il J.1,Layng Jeffrey M.1

Affiliation:

1. Air Force Institute of Technology WPAFB , Dayton, OH 45433

Abstract

Abstract Traditionally fluidic oscillators are designed to be planar. However, there are applications that may desire the exiting fluid to move in the third dimension. This could allow these oscillators to be more effective in applications such as fuel sprays, cooling flow, or flow control devices with its increase in effective spray area. This investigation designed a series of oscillators that curved the whole body and/or the exit nozzle to understand how to maximize out of plane motion. These configurations were compared to a baseline planar oscillator with no curved characteristics. Velocities were measured downstream of these oscillators within a data collection grid using a hot wire probe to determine the 3D shape of the exiting jet. Results show that configurations with only one of the two curved physical characteristics (i.e., only a curved body or a curved nozzle) produced the most curvature. Having both of the curved physical characteristics caused the nozzle width to decrease causing the axial spacing to decrease. Additionally, these curved exiting flows were only seen at mass flow rates below 40 standard liters per minute (SLPM). Higher mass flow rates caused the exiting flow to flatten, returning the flow to the baseline result of in-plane oscillations. This led to a decrease in jet spread.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3