Impulsive Loading of a Simply Supported Circular Rigid Plastic Plate

Author:

Jones Norman1

Affiliation:

1. Division of Engineering, Brown University, Providence, R. I.

Abstract

It is clear from a survey of literature on the dynamic deformation of rigid-plastic plates that most work has been focused on plates in which either membrane forces or bending moments alone are considered important, while the combined effect of membrane forces and bending moments on the behavior of plates under static loads and beams under dynamic loads is fairly well established. This paper, therefore, is concerned with the behavior of circular plates loaded dynamically and with deflections in the range where both bending moments and membrane forces are important. A general theoretical procedure is developed from the equations for large deflections of plates and a simplified yield condition due to Hodge. The results obtained when solving the governing equations for the particular case of a simply supported circular plate loaded with a uniform impulsive velocity are found to compare favorably with the corresponding experimental values recorded by Florence.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on similarity laws of cabin structure under internal blast loading;Ocean Engineering;2022-09

2. Spherical equivalence of cylindrical explosives: Effect of charge shape on deflection of blast-loaded plates;International Journal of Impact Engineering;2021-09

3. Scaling the response of armor steel subjected to blast loading;International Journal of Impact Engineering;2021-07

4. A study on fracture of metal plate under the detonation wave interaction;International Journal of Impact Engineering;2020-11

5. A Pioneer of Impact Engineering;Ships and Offshore Structures;2020-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3