Combustion Characteristics of Lean Burn and Stoichiometric With Exhaust Gas Recirculation Spark-Ignited Natural Gas Engines

Author:

Xu Hui1,LaPointe Leon A.1

Affiliation:

1. Cummins, Inc., 1900 McKinley Avenue, Mail Code 50114, Columbus, IN 47201 e-mail:

Abstract

Natural gas (NG) has been widely used in reciprocating engines for various applications such as automobile, electricity generation, and gas compression. It is in the public interest to burn fuels more efficiently and at lower exhaust emissions. NG is very suitable to serve this purpose due to its clean combustion, small carbon footprint, and, with recent breakthroughs in drilling technologies, increased availability and low cost. NG can be used in lean burn spark-ignited (LBSI) or stoichiometric EGR spark-ignited (SESI) engines. Selection of either LBSI or SESI requires accommodation of requirements such as power output/density, engine efficiency, emissions, knock margin, and cost. The work described in this paper investigated the feasibility of operating an engine originally built as an LBSI under SESI conditions. Analytical tools and workflow developed by Cummins, Inc., are used in this study. The tools require fundamental combustion properties as inputs, including laminar flame speed (LFS), adiabatic flame temperature (AFT), and auto-ignition interval (AI). These parameters provide critical information about combustion duration, engine out NOx, and relative knock propensity. An existing LBSI engine operating at its as released lambda was selected as baseline. The amount of exhaust gas recirculation (EGR) for the SESI configuration was selected so that it would have the same combustion duration as that of the LBSI at its reference lambda. One-dimensional (1D) cycle simulations were conducted under both SESI and LBSI conditions assuming constant output power, compression ratio, volumetric efficiency, heat release centroid, and brake mean effective pressure (BMEP). The 1D cycle simulations provide peak cylinder pressure (PCP) and peak unburned zone temperature (PUZT) under LBSI and SESI conditions. The results show that the SESI configuration has lower PCP but higher PUZT than that of the LBSI for the same output power. Also, for the same combustion duration, SESI has higher AFT than that of LBSI, resulting in higher engine out NOx emissions. The SESI configuration has shorter AI than that of LBSI engine, or smaller relative knock margin. Reduction of output power and emissions aftertreatment in the form of a three-way catalyst (TWC) is required to operate under SESI engine conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference7 articles.

1. Analysis of Different Exhaust Gas Recirculation Architectures for Passenger Car Diesel Engines;Appl. Energy,2012

2. Calculation of Laminar Flame Speed and Autoignition Delay at High Temperature and Pressures,2013

3. The Prediction of Ignition Delay and Combustion Intervals for a Homogeneous Charge, Spark Ignition Engine,1978

4. Three Pressure Analysis (TPA);Gamma Technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3