A Special Theory of Biphasic Mixtures and Experimental Results for Human Annulus Fibrosus Tested in Confined Compression

Author:

Klisch Stephen M.1,Lotz Jeffrey C.2

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA

2. Orthopædic Bioengineering Laboratory, Department of Orthopædic Surgery, University of California, San Francisco, CA 94143

Abstract

A finite deformation mixture theory is used to quantify the mechanical properties of the annulus fibrosus using experimental data obtained from a confined compression protocol. Certain constitutive assumptions are introduced to derive a special mixture of an elastic solid and an inviscid fluid, and the constraint of intrinsic incompressibility is introduced in a manner that is consistent with results obtained for the special theory. Thirty-two annulus fibrosus specimens oriented in axial n=16 and radial n=16 directions were obtained from the middle-lateral portion of intact intervertebral discs from human lumbar spines and tested in a stress-relaxation protocol. Material constants are determined by fitting the theory to experimental data representing the equilibrium stress versus stretch and the surface stress time history curves. No significant differences in material constants due to orientation existed, but significant differences existed due to the choice of theory used to fit the data. In comparison with earlier studies with healthy annular tissue, we report a lower aggregate modulus and a higher initial permeability constant. These differences are explained by the choice of reference configuration for the experimental studies. [S0148-0731(00)01002-5]

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3