Subsurface Stress Fields in Face-Centered-Cubic Single-Crystal Anisotropic Contacts

Author:

Arakere Nagaraj K.1,Knudsen Erik1,Swanson Gregory R.2,Duke Gregory3,Ham-Battista Gilda4

Affiliation:

1. Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6300

2. NASA Marshall Space Center Flight Center, ED22, Structural Mechanics Group, Huntsville, AL

3. JE Sverdrup, Huntsville, AL

4. ERC, Inc., Huntsville, AL

Abstract

Single-crystal superalloy turbine blades used in high-pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high-cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single-crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two- and three-dimensional (3D) subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single-crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii (1963, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, Inc., San Francisco, pp. 1–40). Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single-crystal contact problems require extremely refined 3D finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses on the principal slip planes also involves considerable postprocessing work. For these reasons, it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

1. Variables of Fretting Process: Are There 50 of them;Dombromirski

2. High Cycle Fatigue in Aircraft Gas Turbines: An Industry Perspective;Cowles;Int. J. Fract.

3. Deluca, D., and Annis, C., 1995, “Fatigue in Single Crystal Nickel Superalloys,” Office of Naval Research, Department of the Navy, Report No. FR23800, August.

4. Superalloys: Genesis and Character;Sims

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3