Numerical Simulation of the 3D Simultaneous Heat and Mass Transfer in a Forced Convection Solar Drying System Integrated With Thermal Storage Material

Author:

Komolafe Clement A.1

Affiliation:

1. University of Mines and Technology Department of Mechanical Engineering, Faculty of Engineering, , P.O.B. 237, Tarkwa, Ghana 03123 , West Africa

Abstract

Abstract The demand for quality dried products necessitates cost effective and innovative drying techniques that will improve its market value. The slow drying rate, weather dependency, and moisture reabsorption have been identified as the major challenges of solar drying operation. To address these shortcomings, hybrid solar drying systems have been recommended for the drying of various agricultural materials and other porous products. Designing a better drying system to accommodate thermal storage materials requires detailed analysis, which could be achieved through numerical simulation. Therefore, the numerical simulation of heat and mass transfer in a forced convection solar drying system integrated with black-coated firebrick sensible thermal storage materials (STSM) for the cocoa beans, locust beans, cereal grains, etc., was investigated under no-load conditions. The equations governing the fluid flow for a three-dimensional solar drying system were solved using the finite volume method with the aid of ansys, the computational fluid dynamics software to comprehend the dynamic and thermal behavior of the airflow within the dryer. The experimental maximum temperature values of 96.9 °C and 77.3 °C for the collector and drying chamber were in agreement with the simulated maximum collector and drying chamber temperatures of 116.9 °C and 80 °C respectively. The designed solar drying system with the incorporated STSM showed the capacity of raising the temperature of the air within the drying chamber to 3–37 °C above ambient temperature between 01:00 p.m. and 10:00 p.m. The agreement of the simulated dryer model with the experimental one is an indication that the developed dryer is suitable for drying cocoa, locust beans, fish, cereal grains, and some other agricultural products within an acceptable period based on the previous studies and therefore, the drying system is recommended to avoid the shortcomings associated with traditional/open sun drying.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3