New Two-Fluid Model Near-Wall Averaging and Consistent Matching for Turbulent Bubbly Flows

Author:

Vaidheeswaran Avinash1,Prabhudharwadkar Deoras2,Guilbert Paul3,Buchanan John R.4,de Bertodano Martin Lopez5

Affiliation:

1. School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 e-mail:

2. GE Global Research, Bangalore 560066, India e-mail:

3. ANSYS UK Ltd, Abingdon OX14 4RW, Oxon, UK e-mail:

4. Bechtel Marine Propulsion Corporation, Bettis Laboratory, West Mifflin, PA 15122 e-mail:

5. School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47906 e-mail:

Abstract

A new two-fluid model averaging in the near-wall region is proposed to ensure consistent matching of the two-phase k–ε turbulence model with the two-phase logarithmic law of the wall (Marie J. L., Moursali, E., and Tran-Cong, S., 1997, “Similarity Law and Turbulence Intensity Profiles in a Bubbly Boundary Layer,” Int. J. Multiphase Flow, 23(2), pp. 227–247). The void fraction distribution obtained with the averaging procedure is seen to conform to the two-phase wall function approach which is based on a double step function void fraction distribution. In particular, the proposed averaging technique is shown to achieve grid convergence in the near-wall region, which could not be obtained otherwise. Computational fluid dynamics (CFD) results with the proposed technique are in good agreement with experiments on upward bubbly flows over a flat plate, and upward and downward flows in pipes. An additional advantage of the proposed technique is that it replaces the wall force model, which has a significant degree of uncertainty in turbulent flow modeling, with a simpler geometric constraint.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3